
Introduction

A variety of wastes, containing high amounts of hy-

drocarbons are generated during production and re-

fining of petroleum. These wastes are hazardous in

nature and their disposal/gainful utilization is an im-

portant global issue. Combustion, pyrolysis, gasifica-

tion etc. offer considerable benefits over conventional

landfills for disposal of such wastes as these pro-

cesses considerably reduce the volume of waste and

in many cases the energy can be utilized [1–5].

Lakwa oil field, situated in the northeastern re-

gion of India is one of the largest oil producing area

and the ETP of this oil field produces about 12 m3 of

sludge per day. The organic material content in the

sludge is not so high like some other petroleum derived

sludge for their economical recovery. However, the

fuel value of the sludge, like in many other carbona-

ceous wastes [6, 7] can be used in the preparation of

masonry bricks, lightweight aggregates, calcined clay

pozzolana etc. ceramic materials [8–11]. Utilization of

the organic materials of the sludge as a fuel for various

purposes requires knowledge of its thermoanalytical

characteristics. The thermal characteristics of the

sludge can be conveniently carried out isothermally

and non-isothermally using a thermogravimetric ana-

lyzer with a small amount of sample. The isothermal

experiments may lead to some error due to difficulty in

accounting for the reaction occurring during the heat-

ing up period [12] and thus non-isothermal methods,

based on heating the sample at a constant heating rate

and recording the mass change is more practical for

simulating large-scale processes. The combustion be-

haviour of Lakwa ETP sludge, as investigated by

non-isothermal thermogravimetric and IR methods has

been presented in this communication. The kinetic pa-

rameters were also determined by applying standard

methods and a simple thermokinetic model has been

proposed to explain the reaction steps.

Experimental

The detailed methods of sample preparation, chemical

analysis, trace metal analysis, separation and charac-

terization of organic matter, determination of calorific

value were reported in our previous communications

[8–11].

The thermoanalytical curves were obtained in a

computerized TA instruments (model STD 2960 si-

multaneous DTA TG), under dynamic airflow at the

rate of 100 cm3 min–1. The samples (~10 mg) were

heated in a platinum crucible at the heating rates of 5

and 10°C min–1 using �-Al2O3 as the reference mate-

rial. The airflow and amount of samples were previ-

ously standardized to obtain better thermal curves.

In another set of experiments, approximately

5–10 g of the separated organic materials (SOM) and

the sludge were taken in platinum crucibles and

heated in an electric furnace in air atmosphere to 250,
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350 and 450°C for 0 and 60 min at the heating rate of

10°C min–1. The zero time was taken as the time when

the desired temperature had attained. The samples

were withdrawn from the furnace, allowed to cool

rapidly in a desiccator and their IR and FTIR spectra

were recorded in a PerkinElmer IR spectrometer,

model 640B. The spectra of the oily products were re-

corded from thin film of the neat sample on NaCl disk

and for the rest, from KBr disks. A small amount of

the sludge, taken in a platinum crucible was also

heated in an electric chamber furnace at different tem-

peratures up to 550°C with 30 min soaking time. The

colour of the sample was recorded after cooling.

Kinetic analysis

The rate expression for a decomposition reaction can

be written as:

dX/dt = k (1–X)n (1)

where X – fractional conversion, t – time, k – rate

constant and n – reaction order.

Under non-isothermal conditions for a constant

heating rate �=dT/dt in K min–1 and with the rate con-

stant expressed in Arrhenius form i.e. k=Aexp(–E/RT),

Eq. (1) can be written as:

dX/dt =�dX/dT = A(1–X)nexp (–E/RT) (2)

d
X

X
0

� /(1–X)n=(A/�) exp
0

T

� (–E/RT)dT (3)

where, A – frequency factor, E – activation energy,

R – gas constant and T – absolute temperature in K.

Coats and Redfern [13] integrated Eq. (3) by ex-

panding it into series with the limit conditions of X=0

for T=T0 and X=X for T=T. Thus by ignoring the

higher order terms they obtained the Eq. (4)

ln[{g(X)}/T 2]=ln[{AR/�E}

{1–2RT/E}]+(–E/R)1/T (4)

where g(X)= –ln(1–X) for n=1 and

g(X)=[{1–(1–X)1–n}/(1–n)] for n�1.

The first term of the right hand side of Eq. (4) is ap-

proximately constant for large value of E/RT (>20).

Therefore, when g(X) is calculated using correct n value,

then the plot of ln [g(X)/T 2] vs. 1/T gives a straight line

with a slope –E/R, which is used to calculate the appar-

ent activation energy, E. The frequency factor, A is de-

termined from the intercept of the straight line.

The values of apparent activation energies and

frequency factors, which do not follow the condition,

E/RT>20, the kinetic parameters are calculated by us-

ing differential method. The Eq. (1) can be rearranged

and expressed in Arrhenius form as:

(dX/dt)/(1–X) n=A exp(–E/RT)

or ln[(dX/dt)/(1–X)n]=ln[A]+(–E/R) 1/T (5)
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Table 1 Some properties and composition of oil sludge used in this study

Physical characteristics Colour: brown Odour: mineral oil State: slurry

Drying/calcining characteristics:
mass loss/%

100�10°C 500�10°C 950�10°C

68.57 80.45 87.73

Calorific value:
kcal kg–1

As received material:
After drying at (100�5°C)

3980
4353

Separated organic materials: Resin 26.50%

Wax 8.50%

Asphaltene 0.35%

Other heavy oil components 64.00%

Oxide Amount/% Elements Amount/mg kg–1

SiO2 18.98 Cr 414.1

Al2O3 48.12 Pb nd

CaO 25.04 As 24.0

Fe2O3 1.30 Cd 1.7

MgO 0.56 Hg 0.6

Na2O 1.01 Ni 144.6

K2O 0.39 Mn 228.6

SO4

2� 3.21



A straight line with slope (–E/R) and intercept lnA,

which respectively give apparent activation energy, E
and frequency factor, A, can be obtained by plotting

ln[(dX/dt)/(1–X)n] vs. 1/T if correct n value is used.

Kinetic curves were analysed by using MS Excel

package (version 9.0.2719) in a computer. The statis-

tical parameters (R2 value and standard error, Se) were

also evaluated for determination of probable reaction

mechanisms.

Results and discussion

The composition of the sludge, SOM and sludge ash

are shown in Table 1. The sludge contains 4.8% or-

ganic and 7% inorganic materials, which corresponds

respectively to 40.68 and 59.32% of the dried sludge.

The organic materials contain heavy oil, resin, wax

and very small amount of asphaltene. The calorific

value of the as received sludge is ~4000 kcal kg–1 and

it increases slightly on drying the sludge at 100±5°C

(4353 kcal kg–1), may be due to the lowering of mois-

ture content. Al2O3, CaO, SiO2, Fe2O3, SO 4

2� and

Na2O are the major inorganic constituents of the

sludge along with various toxic elements.

The thermoanalytical curves of the SOM and

sludge are shown in Fig. 1. The mass loss in the temper-

ature ranges of 100–250, 250–400 and 400–600°C for

SOM are 40.69, 46.07 and 13.24% respectively. The

same for sludge are respectively 18.01 (35.24), 19.75

(38.55) and 13.31 (26.21)%. It is assumed that the mass

loss for sludge at the temperature region of 100–600°C

correspond to the loss from the organic materials of the

sludge. The data indicated in the parenthesis are ob-

tained after this assumption and correspond to the per-

centage loss of organic materials in the temperature

ranges with respect to the total loss of organic materials

from sludge at the temperature region of 100–600°C.
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Fig. 1 Thermal curves of SOM and sludge



The TG and DTG patterns of the SOM and sludge

show that the mass loss from these materials takes

place in three different temperature regions. The DTA

patterns of both the samples exhibit endothermic ten-

dency in the temperature regions of 100–250°C ac-

companied with mass loss due to distillation/volatiliza-

tion of the organic materials. This is followed by an

exotherm (250–400°C) with exothermic maxima at

350.3°C for sludge and 338.1°C for SOM, due to ther-

mal oxidative cracking. The DTA pattern of the sludge

shows a weak inflexion at 330°C accompanied by a

break in the TG curve and is attributed to onset of poly-

merization of some cracked products. Thus exothermic

maximum observed at 350.3°C in the DTA curve of

the sludge corresponds to both the oxidative cracking

and polymerization processes. The DTA curve of SOM

shows the exothermic maximum at 338.1°C accompa-

nied by a break in the TG curve in the same tempera-
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Fig. 2 IR spectra of SOM and FTIR spectra of sludge, heat treated at different temperatures and times: a – original; b – 250°C for 0

min; c – 250°C for 60 min; d – 350°C for 0 min; e – 350°C for 60 min; f – 450°C for 0 min; g – 450°C for 60 min;

h – 550°C for 0 min (sludge only)



ture indicating initiation of polymerization reaction.

The DTA curve of the SOM exhibits two other exo-

therms in the temperature regions of 400–500 and

500–600°C, attributed to polymerization of cracked

products and their combustion. The sludge sample

however exhibits a broad exotherm due to combustion

of polymerized products (char) in the 400–600°C re-

gion with maximum at 476°C. This maximum is at a

lower temperature than that of the SOM (530°C) indi-

cating influence of inorganic materials present in the

sludge on the combustion of the organic materials. The

mass loss from the sludge in the temperature regions of

100–250 and 250–400°C are less and 400–600°C are

more than those from the SOM. The inorganic materi-

als, therefore, reduce the conversion in the thermal

cracking and thermal oxidative cracking stages but in-

creases the amount of polymerized products.

The IR spectra of the SOM as such and after heat-

ing under isothermal conditions at 250, 350 and 450°C

for various durations are shown in Fig. 2. The SOM ex-

hibits sharp and strong bands at 2800–3000 and

1377–1475 cm–1 regions characteristics of aliphatic

compounds and prominent bands of aromatic hydrocar-

bons and compounds containing >CO group respec-

tively at 1600 and 1713 cm–1. The intensity of the band

at 1713 cm–1 decreases on heating the samples to 250°C

for 0 min. The DTA curve of the SOM (Fig. 1) also

shows an exothermic tendency up to 250°C suggesting

thermal degradation of the low volatile components

containing >CO groups. The intensities of the bands due

to compounds containing >CO group and aromatic hy-

drocarbons increase due to oxidative thermal degrada-

tion and aromatization of hydrocarbon and those of

aliphatic group remains almost unaltered on prolonging

the heating time to 60 min, which is also suggested by

the thermal curves. The same effect of prolonging the

heating time at 250°C on the intensities of the bands at

1713 and 1600 cm–1 can be achieved by increasing the

temperature to 350°C for 0 min. The heated product ex-

hibits a peak at 1224 cm–1 indicating the formation of

–COOH group. This peak completely disappear as well

as the bands at 1713, 2800–3000 and 1377–1475 cm–1

decrease sharply and that at 1600 cm–1 increases due to

oxidative thermal degradation of aliphatic hydrocarbons

and aromatization of organic compounds on increasing

the heating time at 350°C to 60 min. The same changes

are observed on heating the sample at 450°C for 0 min.

The intensities of the bands in the region of

2800–3000 cm–1 decrease and a new band appear at

1600 cm–1 indicating enhanced combustion of aliphatic

compounds and formation of aromatic products on pro-

longing the heating time at 450°C.

FTIR spectra of the sludge and its heat-treated

products are also shown in Fig. 2. The bands at ~2922

and ~2851 cm–1 are due to aliphatic hydrocarbons and

the sharp band around 1630 cm–1 may be due to C=C

vibration or O–H stretching vibration of adsorbed water.

The aliphatic band region (1377–1475 cm–1) is less in-

formative due to presence of large amount of calcite in

the sludge. The intensities of the peaks at 2922 and

2851 cm–1 slightly decrease on heating the sludge up to

250°C for 0 min indicating degradation of aliphatic ma-

terials. The decreasing intensities of these peaks and in-

creasing intensities of peaks due to aromatic

(1600 cm–1), >CO, –COOH and –OH groups indicating

oxidation of degraded products and formation of

aromatics on prolonging the heating at 250°C to 60 min.

The intensities of the peaks at 2800–3000 cm–1 increase

and those at 1700, 1366, 1300 and 1600 cm–1 decrease

on heating the sludge at 350°C for 0 min indicating

degradation of aromatic structures and formation of

aliphatic compounds. Increasing the heating time up

to 60 min, again decreases the intensities of the peaks

due to aliphatic groups and increases the intensities of

the bands due to aromatic as well as compounds con-

taining >CO, –COOH and –OH groups indicating the

increase oxidation and aromatization of the organic

material. The intensities of the peaks due to aliphatic

groups increase and those due to aromatics (1600 and

3010 cm–1), >CO, –COOH and –OH groups decrease

on heating the sludge up to 450°C for 0 min. The in-

tensities of the peaks due to aromatic, >CO, –COOH

and –OH groups increase and those due to aliphatic

compounds decrease on increasing the heating time to

60 min. Thus polymerization and combustion are the

major reactions taking place at 450°C. The sample

heated to 550°C for 0 min does not exhibit peaks due

to aromatic groups indicating completion of the com-

bustion reaction. The disappearance of the bands due

to aliphatic compounds accompanied with appear-

ance of the bands due to aromatic, >CO, –COOH and

–OH groups indicates the thermal oxidation of the or-

ganic compounds with aromatization. The formed

–COOH and –OH groups possibly combine with the

alkaline metal ions present in the sludge forming

M2+–O type surface groups which accelerate the com-

bustion of the polymerized products like chars [14].

Visual observation showed that the sludge ash

produced at 350°C is black in colour indicating that it

is rich in char. The colour fades on heating at 450°C,

due to combustion of the char. The 550°C heated ash

is almost white indicating complete combustion of the

carbonaceous materials.

Thus the decompositions of the organic materi-

als in the sludge and SOM proceed through the fol-

lowing different steps:

For sludge: I. 100–250°C: distillation and vola-

tilization; II. 250–400°C: oxidative thermal cracking

and formation of aromatic polymerized products; III.
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400–600°C: combustion of aromatic polymerized

products.

For SOM: I. 100–250°C: distillation and volatil-

ization; II. 250–400°C: oxidative thermal cracking

and formation of aromatic polymerized products; III.

400–500°C: formation and combustion of aromatic

polymerized products; IV. 500–600°C: combustion of

aromatic polymerized products.

Figure 3 shows the plots of ln[(g(X)/T2)] vs.

1/T�103 for the SOM and sludge respectively in differ-

ent temperature regions. The kinetic parameters cal-

culated for different steps of the thermal conversion

reactions of the organic materials associated with the

sludge and SOM are shown in Table 2.

The reaction orders of the SOM in the tempera-

ture regions of 100–250 and 250–400°C are 1.25 and

1.50 respectively and at 400–500 and 500–600°C, it

is 2.0. The reaction orders of the organic materials as-

sociated with the sludge at 100–250°C is 1.0 and at

250–400°C and 400–600°C, it is 2.0. The reaction or-

der for vaporization of pure organic substances like

benzene has been reported as 0 and that for crude oil

distillation as 2.2 [15, 16]. The relatively high reac-

tion orders for distillation and volatilization of the or-

ganic materials associated with the sludge (1.0) and

SOM (1.25) is probably due to complex nature of the

organic materials.

The apparent activation energy for distillation and

volatilization of organic materials associated in the

sludge (~33 kJ mol–1) is lowers than that (~58 kJ mol–1)

for the SOM and is in good agreement with the gener-

ally observed activation energy of adsorption. The low

activation energy and reaction order for the organic ma-

terials associated in the sludge than those for the SOM

are possibly for adsorption of the organic materials on

the inorganic surfaces of the sludge. The apparent acti-

vation energies for the organic materials present in the

sludge (110.71 kJ mol–1) and SOM (102.35 kJ mol–1) at

250–400°C region are approximately same, possibly

due to the presence of CaCO3 and clay bearing materials

in the sludge [17], which have opposite character [18].

The former enhances and the later inhibits oxidation of

the carbonaceous materials [18]. The inorganic materi-

als present in the sludge profoundly influence the com-

bustion (400–600°C) of organic materials. It takes place

in a single step against two steps conversions found for

the SOM. In determination of the kinetic parameters, the

TG data of the SOM at this temperature region could not

be fitted for one stage conversion (R2<0.90). The appar-

ent activation energy for the combustion of the organic

materials in the sludge (149 kJ mol–1) is considerably

lower than those for the SOM (~244 and 458 kJ mol–1)

and is attributed to the catalytic activity [19] of some of

the inorganic materials like CaCO3 present in the sludge

[18]. The DTA pattern of the sludge and also the energy
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Table 2 Activation energies (kJ mol–1), reaction rates and frequency factors (s –1) according to Coats and Redfern (CR) and dif-
ferential (DM) methods

Temperature/°C

CR method DM method

F valueReaction
order

Activation
energy

Frequency
factor

Reaction
order

Activation
energy

Frequency
factor

A. Separated organic materials at the heating rate of 10°C min–1

100–250 1.5 59.91 1.29·106 1.25 58.23 8.43·105 0.40

250–400 1.5 102.35 5.70·108 0.45

400–500 2.0 243.92 1.55·1018 0.07

500–600 2.0 457.83 1.71·1029 0.08

B. Sludge I at the heating rate of 10°C min–1

100–250 1.0 38.66 3.48·103 1.0 33.69 1.10·103 0.35

250–400 2.0 110.71 3.82·109 0.39

400–600 2.0 149.00 8.33·109 0.26

C. Sludge I at the heating rate of 5°C min–1

100–250 1.0 34.22 6.81·102

250–400 2.0 83.90 5.34·106 2.0 96.10 7.67·107

400–600 2.0 109.36 6.58·106 2.0 107.00 6.58·106

D. Sludge II at the heating rate of 10°C min–1

100–285 1.5 41.60 6.08·103 1.0 27.07 1.27·102

250–420 1.5 86.84 4.66·106 1.5 72.13 3.70·105

400–500 2.0 300.11 2.63·1021



parameters evaluated for the temperature ranges of

250–400 and 400–600°C of sludge are similar to oxida-

tion of oil shale reported by other workers [20]. The ap-

parent activation energies for carbon burning process in-

creases with the increase in the orderliness of carbon

structure and for activated carbon, char etc. it is in the

range of 119–459 kJ mol–1 [21]. The apparent activation

energies for decomposition of the char produced in the

sludge and SOM are although in the above range, but it

is higher for the char produced from the later. The char

produced from SOM undergo combustion at relatively

higher temperature than that in the sludge too. The char
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Fig. 3 1/T·103 (K–1) vs. ln[g(x)/T 2] plots for SOM (A, B, C, D) and sludge (E, F, G) at different temperature regions:

(A, E) 100–250°C, (B, F) 250–400°C, (C) 400–500°C, (D) 500–600°C, (G) 400–600°C



produced in decomposition of the SOM is therefore

more ordered. The inorganic materials in the sludge,

therefore affect the mechanism of char formation.

The thermal change of organic materials present

in the sludge is very complex because various complex

concurrent/consecutive reactions are taken place due to

decomposition of wax, resin, different heavy oil frac-

tions etc. constituents. The mechanism and corre-

sponding kinetic parameters for thermal conversions of

the various organic materials present in the sludge are

different from the SOM due to presence of various in-

organic constituents and therefore extremely difficult

to determine the exact kinetic parameters from the TG

curve. However changes occurring in a certain temper-

ature range can be represented by simple conversion

reactions and kinetic parameters for these reactions can

be determined by using thermogravimetric curve.

The following reaction models are assumed for

thermal decomposition of organic materials present in

the sludge and SOM based on the TG and IR analyses:

Sludge K Cs
1 100 250, � �	 
				 decomp. product (d 1

s )

+residues (r 1

s ) K C2 250 400s , – �	 
				 decomp. product (d 2

s )

+residues (r 2

s ) K Cs
3 400 600, – �	 
			 decomp. product (d 3

s )

+residues (r 3

s )

SOM K C1
0 100 250, – �	 
				 decomp. product (d 1

0)+resi-

dues (r 1

0) K C2
0 250 400, – �	 
				 decomp. product (d 2

0)+resi-

dues (r 2

0) K C3
0 400 500, – �	 
				 decomp. product (d 3

0)+resi-

dues (r 3

0) K C4
0 500 600, – �	 
				 decomp. product (d 4

0)

Based on the proposed models and Arrhenius

law, the fraction converted of jth sample in the temper-

ature range of 0–f (f for final temperature), X t

j
for

sludge and SOM may be obtained by the following

equations:

X
W W

W W
md mdt

j
j

t

j

j

f

j i

s

i

3

i

0

i

and�
�

�
�

� �
� �

( )

( )

0

0 1 1

4

(6)

where md
i

i

s

�
�

1

3

and mdi

0

i �
�

1

4

correspond amounts of de-

composed products of sludge in the three consecutive

reactions and SOM in the four consecutive reactions

respectively, W 0

j
, W t

j
and W f

j
are masses in mg of the

sample ‘j’ at the beginning, at any time t and at the

end of the reaction, respectively.

Thus we get the differential equation:

d(mdi

j
/Fi

j
)/dt = K i

j
[1–mdi

j
/Fi

j
]ni

j

(7)

where K Ai

j

i

j� exp(–E i

j
/RT) and ni

j
are the Arrhenius

rate constant and reaction order of ith reaction of sam-

ple 'j', A i

j
and E i

j
are respectively the frequency factor

and apparent activation energy for the ith reaction of

the sample 'j', T is the absolute temperature in K, R is

gas constant in kJ K–1 mol–1, mdi

j
=(W i

j
, T=0 – W i

j
, T=T)/

Wi

j
, T=0 – W i

j
, T=f) is the mass fraction of the decom-

posed product in ith reaction of sample 'j', where for a

particular decomposition step, T varies from 0 to f.
The weighting factor for the ith reaction of the sample

'j' i.e. F i

j
, which accounts for the evolution of decom-

posed products at various stages of the reaction, is

given by: F i

j
=X i

j
f–X i

j
0, where i=1, 2, 3, 4 for SOM

and i=1, 2, 3 for sludge and 0, f denotes the initial and

final temperature of a particular decomposition step

or reaction, i. The weighting factors for various reac-

tions for the SOM and sludge are shown in Table 2.

The equation follows the following equilibrium

condition:

when t = 0, md i

j
(0) = 0 and X i

j
(0) = 0 (8)

Theoretically, it is not possible to obtain the con-

dition as described by Eq. (8) because at the initial

stage of the reaction, a small amount of the products

may be formed. Introduction of some other parameters

is therefore necessary to exact determination of the ki-

netic parameters. We have not introduced such terms,

as the same bring complicacy to the described process.

Solution of the Eq. (7) and neglecting the term

(1–RT/E) for large value of E/RT, lead to the follow-

ing equation:

mdi

j
/Fi

j
=1–

[1–(1–ni

j
)(Ai

j
RT2/�E i

j
){exp(–E i

j
/RT)}]1 1/ ( – )n i

j

for ni

j �1 (9)

and

mdi

j
/Fi

j
=1–

exp[(–Ai

j
RT2/�E i

j
){exp(–E i

j
/RT)}]

for ni

j
=1 (10)

In case of differential method,

mdi

j
/Fi

j
= 1–[1–(1–ni

j
)

(Ai

j
RT2/�E i

j
){1–2RT/E i

j
}{exp(–E i

j
/RT)}]1 1/ ( – )ni

j

for ni

j �1 (11)

and

mdi

j
/Fi

j
=1–exp[(–Ai

j
RT2/�E i

j
)

{1–2RT/E i

j
}{exp(–E i

j
/RT)}] for ni

j
=1 (12)

The activation energies and frequency factors calcu-

lated for the various decomposition reactions of the

SOM and sludge as given in Table 2 are applied to de-

termine m
di

j
. The same for SOM and sludge are shown

in Fig. 4. The theoretical X values as calculated from

Eq. (6) are also included in the same figures along with

the experimental values. The good agreement between
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the computed data with the experimental data indicate

that the proposed model adequately describe the com-

bustion of the ETP sludge and SOM with no detailed

chemical composition of combustion products. The ki-

netic parameters for the thermal conversion reactions

of the same sludge at the heating rate of 5°C min–1 and

another ETP sludge (sludge II in Table 2) with differ-

ent compositions with the heating rate of 10°C min–1

are also evaluated to ascertain the suitability of the

model. The good agreement of the theoretical and ex-

perimental values of X and mdi

s values as shown in Fig.

4 support the validity of the model. It is also observed

that the evolution of the decomposed product of the

SOM at the initial heating time is ~0, which is a conse-

quence of Eq. (8). But for sludge, the value is slightly

higher than 0, may be due to the fact that apart from the

loss of organic materials as assumed other materials

present in the sludge may also be lost in the 100–600°C

temperature range. The complex surface chemical re-

actions that may take place in the inorganic-organic

composition of the sludge may also be responsible for

the same. In spite of the limitation, the kinetic model as

presented in this communication is adequate to de-

scribe simple thermal conversion reactions of organic

materials of sludge.

Conclusions

The oxidative thermal treatment of ETP sludge could

be summarized as:

The SOM undergo conversion in four different

stages. The presence of inorganic materials in the

sludge changes the thermal decomposition process to

a three-stage process. The inorganic constituents do

not effect the temperature of distillation and volatil-

ization processes of the organic materials but consid-

erably effect the conversion processes of the organic

materials above 400°C. It decreases the oxidative

thermal decomposition products and lowers the tem-

perature of the polymerization reactions and combus-
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Fig. 4 Experimental data (—) and computed values (�) of fractional conversion (X) and computed values of mass fractions of de-

composed products (md) predicted from proposed model for combustion of (A) separated organic material at heating rate of

10°C min–1, (B) Sludge at heating rate of 10°C min–1, (C) Sludge at heating rate of 5°C min–1 and (D) another ETP sludge at

heating rate of 10°C min–1



tion of aromatic polymerized products, may be due to

formation of alkali-oxygen surface complex. The der-

ivation of kinetic parameters also supports the obser-

vations regarding the effect of inorganic constituents.

The kinetic model proposed to explain the experimen-

tal results adequately describe the combustion of ETP

sludge at different rates and compositions.
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